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Abstract
We present theoretical, computer simulation and experimental results for the structural length
scales characterizing bulk and confined charged colloidal suspensions. The target quantities are
the bulk pair correlation functions on the one hand, and the oscillatory solvation forces of the
colloids in films of various thicknesses on the other. Recently we have shown, for a system with
very low salt concentration, that these quantities are characterized by the same wavelength in
the asymptotic limit, in agreement with predictions from density functional theory. Here we
consider systems with larger ionic strengths of added salt. Our results indicate that the
wavelength remains essentially unaffected, whereas the correlation length and the amplitude
depend significantly on the amount of added salt. Indeed, already at ionic salt strengths as low
as 10−3 mol l−1 the force oscillations essentially disappear.

1. Introduction

Confining fluids in slit-pore geometries leads to damped
oscillatory surface forces [1]. This well-known effect is
directly related to the oscillatory density profile perpendicular
to the surface [2, 3]. The oscillation period indicates the
distance between regions of high density, that is, the layers
formed parallel to the confining surface. The decay length is a
measure of how far the surfaces must be separated to observe
homogeneous bulk-like behavior in between. Oscillatory
forces are a rather generic feature occurring for atomic
and molecular fluids, but also for colloidal particles [4–8],
liquid crystals [9] and aggregates such as micelles and
polyelectrolytes [10–14]. These complex confined fluids can
also be considered as solvents (‘depletion agents’). The
layering of the solvent particles then induces oscillations in the
resulting depletion interactions [15–17].

Understanding these interactions and the behavior of the
underlying confined solvent is essential in colloid science,
e.g. to ensure stability against flocculation, in biological

3 Author to whom any correspondence should be addressed.

contexts (e.g., stacking of red blood cells) and, generally,
for the design of novel materials and devices for micro-
and nanofluidics. A particularly interesting question in this
context is the relation between the structural observables in
confined geometry (solvation force, depletion potential) and
the structure in the corresponding bulk system.

Recently we have started to address these questions for
a system which is treatable both by experiment and by
theory [18, 19]. Specifically, a charged colloidal suspension
composed of silica nanospheres was considered. In [19] we
have analyzed one key quantity characterizing the oscillatory
forces, that is, the wavelength. In particular, we have shown
that this quantity coincides with the wavelength characterizing
the asymptotic behavior of the bulk correlation function at the
same chemical potential (and temperature). In this way, we
have verified predictions from density functional theory (DFT),
where the above relation is well-established [20, 21]. The
results in [19] were obtained for one particular ionic strength.
The purpose of the present work is to present theoretical and
experimental data illustrating the impact of an increasing salt
concentration on the wave and correlation length.
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2. Experiments

2.1. Materials

Ludox grade TMA colloidal silica beads (LUDOX TMA-34
deionized) were used as nanoparticles. The suspension was
purchased from Aldrich (Taufkirchen, Germany). In order to
remove the salt the samples were dialyzed against Milli Q
water (Millipore, Billerica, USA) for 10 days. The tubes, with
a molecular weight cut off of 1000, were from Roth (Karlsruhe,
Germany). A diameter of 25 ± 2 nm was determined by
scanning electron microscopy (SEM), small angle neutron
scattering (SANS) and scanning force microscopy (SFM).
The ζ -potential is about −80 mV at an ionic strength below
10−5 mol l−1, determined by a Nanozetasizer (Malvern).

After dialysis, the particle weight concentration was
determined by weighting the suspensions before and after
drying in an oven (24 h at 400 ◦C). Suspensions at
concentrations between 5 and 17 wt% were prepared with
Millipore water. The volume concentration of particles can be
converted by the particle density (2.2 g ml−1) and density of
original TMA suspension (1.2 g ml−1). The ionic strength was
adjusted by adding a known amount of NaCl solution (Carl
Roth GmbH & Co.).

2.2. Colloidal probe atomic force microscopy (CP–AFM)

The colloidal probe technique was invented by Ducker et al
[22]. In our experiments, a silica particle of radius R =
3.31 μm was used as the colloidal probe. It was glued
with epoxy (UHU Plus Endfest 300) to a tipless cantilever
(Ultrasharp Contact Silicon Cantilevers, CSC12) produced by
μMasch and distributed by Anfatec. The colloidal probes were
purchased from Bangs Laboratories, Inc. The tip was cleaned
by plasma cleaning for 10 min just before each measurement
cycle to remove all the organic components on its surface. The
substrate was a silicon wafer with a native SiO2 top layer,
cleaned by the RCA method [23] and stored in Millipore water
before use. Just before each experiment, the substrate was
taken out of the water and dried in a nitrogen stream. Drops of
the Ludox particle suspension were spread onto the substrate
and the probing head immersed in the solution droplet.
Force versus distance curves (F(h)) were measured with a
commercial atomic force microscope molecular force probe
(MFP) produced by Asylum Research, Inc. and distributed
by Atomic Force (Mannheim, Germany). The scanning
frequencies of approaching–retreating runs were 0.1 Hz for
distances of 100–500 nm. Since the distance between the
colloidal probe and the substrate is much smaller than the
diameter of the colloidal probe, by Derjaguin approximation,
the curved surface of the colloidal probe can be considered
as a flat surface and the interaction energy per area E(h) can
be acquired from the force F(h), E(h) = F(h)/2π R. As
both the Ludox particles and the SiO2 surfaces are negatively
charged, there is generally no adsorption of particles onto
the surfaces. For each suspension 30–40 force–distance
curves were measured at different lateral positions on the
same substrate as well as on different substrates to ensure

reproducibility and to get good statistics. The oscillatory forces
are fitted according to the equation

F

2π R
= Af exp

(
− h

ξf

)
cos

(
2π

h

λf
+ θf

)
+ offset, (2.1)

where F is the force, R is the radius of the colloidal probe
and h is the distance between the substrate and the colloidal
probe, i.e. the thickness of the liquid film between the two solid
surfaces. The three important parameters that characterize the
oscillation are the amplitude A, the decay length ξf and the
period λf. In the discussion that follows, the phase shift θf and
the offset are omitted for the sake of clarity. In fitting the force
data, we have neglected the region close to hard contact, which
is discussed below. The final result for each parameter is the
average of 10–20 fitting results and the error bar is from the
standard deviation.

3. Theoretical methods

We model the suspension on an effective level via the
electrostatic part of the Derjaguin–Landau–Verwey–Overbeek
(DLVO) potential [24] involving only the negatively charged
silica macroions. The resulting interaction reads

u(r) = Z̃ 2e2
0

exp(−κr)

4πε0εr
, (3.1)

where e0 is the elementary charge, ε0 and ε are the
permittivity of the vacuum and the solvent dielectric constant,
respectively, and Z̃ = Z exp(κσ/2)/(1 +κσ/2) is an effective
valency involving the inverse Debye screening length κ =
(e2

0/ε0εkBT )1/2(Zρ + 2I NA)1/2 (with ρ being the particle
number density). Here, I is the ionic strength of the added
salt, and we set the valency Z = 35 and σ = 26 nm [18].
In addition to the DLVO potential, the particles interact (for
numerical reasons) via soft-sphere repulsion; the strength of
this interaction, however, is negligible compared with the
DLVO repulsion (of about 50 kBT ) at typical interparticle
distances.

To calculate the bulk correlation function gb(r) of our
model we have performed canonical Monte Carlo (MC)
simulations using N = 500–2000 particles depending on
the volume fraction � = (π/6)ρσ 3. In addition, we have
numerically solved integral equations for gb(r) consisting
of the exact Ornstein–Zernike equation combined with the
approximate hypernetted chain (HNC) closure [25]. A
convenient feature of using integral equations is that the
asymptotic structure, that is, the dominant wave and correlation
length of the function hb(r) = gb(r) − 1 (with hb(r) being
the total correlation function) in the limit r → ∞ can be
determined directly. This is done via an analysis of the
complex poles q = ±q1 + iq0 of the structure factor Sb(q) =
1 + ρh̃b(q) [20]. The pole with the smallest imaginary part
then determines the slowest exponential decay and thus the
asymptotic behavior of hb(r), i.e.

rhb(r) → Ab exp(−q0r) cos(q1r −θb), r → ∞, (3.2)

with q0 playing the role of an inverse correlation length, that
is, q0 = ξ−1

b , and q1 = 2π/λb determining the wavelength
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λb of the oscillations. At the state points considered all
poles have both a real and an imaginary part, in agreement
with earlier findings for Yukawa-like systems [26]. We have
also determined q0 and q1 from the MC data by plotting the
function ln(r |hb(r)|). Wavelength and correlation length then
follow from the oscillations and the slope of the straight line
connecting the maxima at large r .

The slit-pore confinement is modeled by two plane
parallel, smooth, uncharged surfaces separated by a distance
h along the z-direction and of infinite extent in the x–y plane.
The fluid–wall potential ufw(z) is chosen to be purely repulsive
and decays as z−9 [18]. This simple choice is motivated by the
fact that, according to DFT arguments [21], the precise shape
of ufw(z) should influence only the fluid’s behavior close to
the wall but not the asymptotic decay of the solvation pressure
and related quantities. To investigate the confined systems we
have employed MC simulations in the grand canonical (GC)
ensemble, that is, at constant temperature, wall separation,
box area parallel to the walls, and constant chemical potential
μ [18, 27]. Furthermore, the inverse Debye length was fixed at
the value corresponding to the bulk volume fraction.

The key quantity extracted from the GCMC calculations
is the normal (‘solvation’) pressure, f (h) = Pzz(h) − Pb,
where Pb is the pressure of the bulk system at the same
chemical potential, and Pzz(h) can be calculated as a statistical
average involving the instantaneous normal component of
the (virial) pressure tensor [27]. According to density
functional predictions, the asymptotic behavior of f (h) should
be governed by the same wave and correlation (decay) length
as the bulk pair correlation function (see (3.2)), that is

f (h) → Aw exp(−q0h) cos(q1h −θw), h → ∞, (3.3)

with q0 = ξ−1
f and q1 = 2π/λf having the same values as

in the bulk (see (3.2)). In other words, DFT predicts that
ξf = ξb and λf = λb. Indeed, our previous simulations
and experiments [18, 19] have explicitly confirmed the second
prediction, indicating that the wavelength is not affected
by the fluid–wall interactions. On the other hand, the
amplitude Aw and phase θw depend on the nature of fluid–wall
interactions [21, 28]. Our numerical (GCMC) results for f (h)

(see section 4) show that (3.3) with q0 = ξ−1
b and q1 = 2π/λb

indeed provides a very good description for the asymptotic
decay of the normal pressure of the present charged systems.
Specifically, we use (3.3) for wall separations h > hmin, where
hmin corresponds to the first minimum in the normal pressure.
For smaller wall separations we use a cubic polynomial:

f (h) = a0 + a1h + a2h2 + a3h3, h < hmin. (3.4)

The coefficients are adjusted such that both the pressure and
its derivative are continuous at hmin. Then, having found an
accurate fit formula for f (h) one may immediately integrate
f (h) [16]4 to obtain the solvation force F(h)/2π R.

4 The size ratio between the microsphere (diameter 2R) used in the CP-AFM
experiment and that of a silica sphere (diameter σ ) is σ/2R ≈ 7×10−4, which
justifies Derjaguin’s approximation here [16].

Figure 1. Experimental curves for F(h) obtained by CP-AFM for
four different ionic strengths at � = 7 vol% (the data have been
vertically offset for clarity). The ionic strengths were adjusted by
addition of NaCl as indicated (I is given in mol l−1). The solid lines
are fits according to (2.1).

4. Results and discussion

Our main goal in this paper is to identify the effect of the ionic
strength, I , on the surface force and solvation pressure and the
related bulk properties.

As a starting point we consider in figure 1 experimental
results for F(h) from CP-AFM measurements at the volume
fraction � = 7 % and four different ionic strengths obtained by
adding zero, 10−5, 10−4 and 10−3 mol l−1 NaCl to the system.
It is seen that the force amplitude decreases significantly
with increasing ionic strength. Moreover, even at a NaCl
concentration of 10−3 mol l−1 the oscillations in the force
have essentially disappeared. Similar results were obtained
for confined polyelectrolyte solutions where the oscillations
were drastically reduced after adding salt well below the ionic
strength induced by the polyelectrolytes [29].

The solid lines in figure 1 are the fitting curves obtained
according to (2.1). The fit describes the experimental curves at
distances larger than one or two oscillations quite well, but not
on shorter length scales. We note in this context that, according
to (3.3) and (3.2), the expression (2.1) describes only the
asymptotic behavior of the oscillatory force. That means, the
breakdown of (2.1) at small h is rather expected. In addition,
the deviation from the fit at shorter lengths could be due to
crystallization effects close to the surface. Interestingly, the
deviation from the asymptotic behavior at small h becomes less
pronounced with increasing ionic strength. This behavior may
indicate that the increasing electrostatic screening within the
system lowers the tendency for ordering and/or crystallization
at the surface.

Simulation results for the functions f (h) at � = 7%
are shown in figure 2(a). Included are the corresponding fit
functions (see section 3) and the resulting structural forces
F(h)/2π R. According to all these data, the primary effect of
adding salt consists in a pronounced decrease of the amplitude
of the oscillations. This is consistent with the experimental
data for F(h). Indeed, also within the GCMC simulations the
oscillations essentially vanish at I ≈ 10−3 mol l−1. For the
smaller ionic strengths considered in figure 2(a) the oscillatory
asymptotic decay of f (h) is very well described by the leading
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Figure 2. (a) Solvation pressure f (h) as obtained by GCMC at � = 7 % and three different ionic strengths (filled boxes, I = 10−5 mol l−1;
triangles, I = 10−4 mol l−1; circles, I = 5 × 10−4 mol l−1). Also shown are the corresponding fit functions (solid lines) obtained from (3.3)
and (3.4) and the resulting structural forces F(h)/2π R (dashed and dotted lines). Note that f (h) has been fitted using the bulk values for
wave and correlation length, λb and ξb. (b) Corresponding MC data for the bulk function ln(r |hb(r)|). The asymptotic fit functions obtained
from (3.2) are plotted as solid lines.

Figure 3. Asymptotic wavelength as function of the volume fraction for different ionic strengths I (in mol l−1). (a) MC simulation results
(where λf = λb) and experimental data from CP-AFM measurements. (b) MC and HNC results for the bulk system.

bulk wave and correlation lengths λb and ξb characterizing
the MC bulk correlation functions, as already mentioned in
section 3. This is consistent with the DFT predictions [21]
and also with earlier numerical findings by the authors [19]
for systems at low I . Moreover, the asymptotic expression for
f (h) given in (3.3) is found to provide a good approximation
of the oscillations even at remarkably small wall separations,
that is, around the first minimum in f (h) at h ≈ 2σ =
52 nm. Results for the bulk correlation functions are plotted in
figure 2(b) together with the resulting asymptotic fit from (3.2).
Even without a more detailed analysis one observes from
the logarithmic plot in figure 2(b) a decrease of the slope of
ln(r |hb(r)|) towards more negative values, that is, a decrease
of the correlation length ξb, with increasing salt concentration.
This is consistent with the damping of oscillations observed in
f (h) in figure 2(a).

Comparing directly the theoretical and experimental
force–distance curves, respectively, one observes pronounced
differences with respect to amplitudes and the range of the
oscillations. We note that differences are indeed expected
in view of the simplified fluid–wall potential ufw(z) used in
our theoretical calculations. More precisely, according to
DFT [21], only the wavelength and decay length determining
the asymptotic behavior should be independent of ufw(z),
whereas amplitudes and phases (that is, the distance where the

asymptotic behavior actually sets in) should strongly depend
on the model details.

We now consider in more detail the influence of the ionic
strength on the wavelength λf determining the oscillations of
the solvation force. Experimental CP-AFM results for λf as a
function of the silica volume fraction and two ionic strengths
(where oscillations could be observed at all) are plotted in
figure 3(a). Also shown are MC data for λf which, as explained
above, equal the bulk wavelength λb. Furthermore, we have
included in figure 3(b) HNC results for λb obtained from a
pole analysis of the corresponding bulk correlation function.
Various observations can be made. First, each of the three
approaches (CP-AFM, MC, HNC) consistently predicts that
variation of the ionic strength has only a very small effect on
the actual value of λ. In particular, differences between I =
10−5 and I = 10−4 mol l−1 are essentially negligible. Only at
I = 10−3 mol l−1 (where the oscillations in the experiment had
already disappeared), do the results indicate a slight decrease of
the wavelength compared to smaller values of I . This decrease
is in qualitative agreement with earlier HNC calculations [18]
for the average wavelength obtained from the location of the
main peak of the structure factor. Quantitatively, however, the
salt dependence of the structure-factor wavelength [18] is more
pronounced than that of the asymptotic wavelength displayed
in figure 3(b).

4



J. Phys.: Condens. Matter 20 (2008) 494232 S H L Klapp et al

Figure 4. MC and HNC results for the bulk correlation length as
function of the volume fraction for different ionic strengths I
(in mol l−1). Within the MC simulations, ξf = ξb.

Secondly, we see from figure 3(a) that there is excellent
agreement between experimental and MC simulation data for
λf. This is a strong evidence that the actual shape of the fluid–
wall interactions is irrelevant for the period of the force, which
conforms with the DFT predictions. Moreover, comparing the
MC and HNC results (see figure 3(b)) we conclude that these
two theoretical approaches are in good agreement.

Thirdly, all three approaches predict a power-law
behavior of the wavelength according to λ ∝ �−b with
b ≈ 1/3, corresponding to an isotropic ordering. Thus,
although the system is confined and characterized by layer
formation (i.e. translational symmetry is broken), the average
interparticle separation along the direction normal to the
surface remains the same as in the isotropic bulk phase.

Finally, we address the asymptotic correlation (decay)
lengths, ξf, of the oscillatory surface forces. Regarding the
theoretical results, we have found (as for the wavelength) that
the MC values ξf in confined geometry equal those in the bulk
system, ξb. Having this is mind, we plot in figure 4 the MC
results for ξb as a function of the volume fraction for different
values of I . For comparison we have included (bulk) HNC
data. Both approaches predict a significant influence of the
ionic strength on the correlation length as long as the volume
fraction is not too large, that is, � � 15%. For smaller
volume fractions, adding salt at a fixed silica concentration
yields a pronounced decrease of ξb, in agreement with what
we have already seen in figure 2. This can be explained by
simple screening arguments. Interestingly, the actual density
dependence of ξb also depends on the ionic strength, that is,
on κ (see (3.1)). For I � 5 × 10−4 mol l−1, ξb increases
monotonically with � in the range of volume fractions
considered. These strongly screened systems behave more like
systems with hard repulsive potentials (such as hard spheres)
where the range of oscillatory correlations (and thus, ξb) just
increases with �. On the other hand, for I � 10−4 mol l−1, we
observe an initial decrease of ξb with a minimum at � ≈ 10%.
This different behavior may be interpreted as follows. For
small values of I and �, increasing the silica concentration has
a similar effect to adding salt since both yield an increase of
the inverse Debye length κ , and thus the screening. This leads,
in turn, to a damping of oscillations in the bulk correlations

and the related surface properties. Only at larger � does the
system with low salt behave again like a ‘hard-sphere’ in that
ξb increases with �. From figure 4 it is seen that these trends
of the correlation length are predicted both by the (quasi-exact)
MC data and by HNC theory. However, the latter seems to
strongly overestimate both the impact of I and the resulting
density dependence at small concentrations.

The experimentally determined decay (correlation) lengths
have large error bars. However, at all densities considered the
average value of ξf is larger than the theoretical correlation
lengths plotted in figure 4. This is also visible in the slower de-
cay of the experimental force curves (see figure 1) in compari-
son to the simulated ones (see figure 2). According to DFT, the
different fluid–wall potential in experiments and theory should
not have any effect on ξf, as long as the asymptotic limit is con-
sidered. However, particularly in the experimental data, there
is clearly some uncertainty regarding the separation h where
the asymptotic behavior actually sets in. Further investigations
of the correlation length and its density and salt dependence
are under way.
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